
1

EECS 122, Lecture 22EECS 122, Lecture 22
Today’s Topics:Today’s Topics:

TCP Congestion ControlTCP Congestion Control

Fast RetransmitFast Retransmit

Round-Trip Estimation & Time-outRound-Trip Estimation & Time-out

Silly Window SyndromeSilly Window Syndrome

Kevin Fall, kfall@Kevin Fall, kfall@cscs..berkeleyberkeley..eduedu

TCP Slow StartTCP Slow Start

•• Slow-start is a TCP behavior used to getSlow-start is a TCP behavior used to get
to packet equilibriumto packet equilibrium

•• Slow-start increases the congestionSlow-start increases the congestion
window window exponentiallyexponentially, rather than, rather than
linearlylinearly

•• Why called slow-start then?Why called slow-start then?
––well, it is considerably slower than what usedwell, it is considerably slower than what used

to happen (start based only on the receiver’sto happen (start based only on the receiver’s
advertised window)advertised window)

TCP Slow StartTCP Slow Start

•• For each ACK received, increase theFor each ACK received, increase the
congestion window by 1congestion window by 1

•• Results inResults in cwnd cwnd pattern of: 1, 2, 4, 8, 16, pattern of: 1, 2, 4, 8, 16,
32, ...32, ...
––takes time proportional to log W to reachtakes time proportional to log W to reach

window of W, [longer ifwindow of W, [longer if ACKs ACKs delayed] delayed]
2

TCP Slow StartTCP Slow Start
cw

nd

Number of RTTs

TCP Slow StartTCP Slow Start

Sender Receiver

Time

Increase by 1
packet per ACK

TCP Congestion BehaviorsTCP Congestion Behaviors

•• Two algorithms:Two algorithms:
––slow-startslow-start: getting to equilibrium: getting to equilibrium
––congestion avoidancecongestion avoidance: searching for new: searching for new

available bandwidth in path (and reacting toavailable bandwidth in path (and reacting to
congestion)congestion)

•• The two behaviors are mutually exclusiveThe two behaviors are mutually exclusive
for any single point in time, but each TCPfor any single point in time, but each TCP
implements both:implements both:
––establish an operating point to switchestablish an operating point to switch

between the two algorithms (between the two algorithms (ssthreshssthresh))

2

Slow-Start Threshold (Slow-Start Threshold (ssthreshssthresh))

•• Need a way to determine whether theNeed a way to determine whether the
TCP should do slow-start or congestionTCP should do slow-start or congestion
avoidanceavoidance

•• New variable (New variable (ssthreshssthresh):):
–– ifif cwnd cwnd <= <= ssthresh ssthresh, do slow-start, do slow-start
–– ifif cwnd cwnd > > ssthresh ssthresh, do congestion avoidance, do congestion avoidance

•• ssthreshssthresh is initialized to a large value, is initialized to a large value,
after a congestion signal, after a congestion signal, cwnd cwnd is dividedis divided
in half, and in half, and ssthresh ssthresh is set to is set to cwndcwnd

TCP Slow-Start & CongestionTCP Slow-Start & Congestion
AvoidanceAvoidance

cw
nd

Number of RTTs

ssthresh

ssthreshssthresh and and cwnd cwnd maintenance maintenance

•• Congestion window is normally dividedCongestion window is normally divided
on congestion indications (packeton congestion indications (packet dops dops),),
and grows linearly if aboveand grows linearly if above ssthresh ssthresh

•• ssthreshssthresh is reset to is reset to cwnd cwnd after it is after it is
reduced to keep a marker of the lastreduced to keep a marker of the last
operating pointoperating point

•• so, when do we ever enter slow-startso, when do we ever enter slow-start
after a connection has started?after a connection has started?

Detecting Loss with TCPDetecting Loss with TCP

•• TCP uses lost packets as indicators ofTCP uses lost packets as indicators of
congestioncongestion

•• Two methodsTwo methods
––timer expiringtimer expiring
–– fast retransmitfast retransmit

•• Fast retransmit:Fast retransmit:
––because of cumulative ACK, out-of-orderbecause of cumulative ACK, out-of-order

data received at receiver may generatedata received at receiver may generate
duplicateduplicate ACKs ACKs (“ (“dupacksdupacks”)”)

DuplicateDuplicate ACKs ACKs

•• We arrange forWe arrange for TCPs TCPs receiving out-of- receiving out-of-
order packets to respond immediatelyorder packets to respond immediately
with one ACK per packet:with one ACK per packet:
––receiver gets: 5, 6, 7, 8, 10, 11, 12, 13receiver gets: 5, 6, 7, 8, 10, 11, 12, 13
––ACKsACKs: 6, 8, 8, 8, 8, 8 [4: 6, 8, 8, 8, 8, 8 [4 dupacks dupacks]]

•• Provides a hint to sender that packet 9 isProvides a hint to sender that packet 9 is
probably missing at receiver and that 4probably missing at receiver and that 4
packets have arrived after 8 arrivedpackets have arrived after 8 arrived

•• [think about re-ordering!][think about re-ordering!]

Fast RetransmitFast Retransmit

•• Heuristic at sender to triggerHeuristic at sender to trigger
retransmissions w/out timeoutsretransmissions w/out timeouts

•• To avoidTo avoid retransmitting retransmitting due to small re- due to small re-
ordering, look for 3 DUPACKSordering, look for 3 DUPACKS

•• So, on 3rdSo, on 3rd dupack dupack for packet n, for packet n,
retransmit n+1, and send more if sendretransmit n+1, and send more if send
window allowswindow allows

•• If only one packet lost, fills receiver’sIf only one packet lost, fills receiver’s
“hole”, resulting in ACK for top of window“hole”, resulting in ACK for top of window

3

Fast Retransmit ExampleFast Retransmit Example

Sender Receiver

Time

Send 2..6

ACK 2, Send 7
3xACK 2

Re-send 3

ACK 7
Send 8..12

X 3 is lost

Fast RTX ObservationsFast RTX Observations

•• Fast retransmit can repair modest packetFast retransmit can repair modest packet
lost without requiring a retransmissionlost without requiring a retransmission
timer to expiretimer to expire

•• Because it requires 3 Because it requires 3 dupacks dupacks to fire,to fire,
doesn’t work so well with small windowsdoesn’t work so well with small windows
(because there won’t be enough (because there won’t be enough ACKsACKs
generated at the receiver)generated at the receiver)

•• With large numbers of dropped packets,With large numbers of dropped packets,
similar problem (not enough similar problem (not enough ACKsACKs))

Congestion Action on LossCongestion Action on Loss

•• TCP has different behaviors, dependingTCP has different behaviors, depending
on the way it detects loss (RFC2001):on the way it detects loss (RFC2001):
––RTX timer expires:RTX timer expires:

••ssthresh ssthresh = MAX(MIN(win,= MAX(MIN(win,cwndcwnd)/2,2))/2,2)
••cwnd cwnd = 1 (initiates slow-start)= 1 (initiates slow-start)

––fast retransmit (fast recovery):fast retransmit (fast recovery):
••ssthreshssthresh = MAX(MIN(win, = MAX(MIN(win,cwndcwnd)/2,2))/2,2)
••cwnd cwnd = = ssthresh ssthresh + 3+ 3
••each additional each additional dupack dupack increments increments cwnd cwnd by 1by 1

–– fast recoveryfast recovery
–– ((cwnd cwnd = = ssthresh ssthresh on new ACK)on new ACK)

TCP Congestion BehaviorTCP Congestion Behavior
(summary)(summary)
•• Slow-start:Slow-start:

––new connection, after idle time, after RTXnew connection, after idle time, after RTX
timer expirestimer expires

––set set cwndcwnd=1, grow window exponentially=1, grow window exponentially
––searches quickly for operating pointsearches quickly for operating point

•• Congestion avoidance:Congestion avoidance:
––normal operations, fast RTX/recoverynormal operations, fast RTX/recovery
––divide operating point in 1/2 after lossdivide operating point in 1/2 after loss
––searches slowly for new bandwidthsearches slowly for new bandwidth

Setting Setting TCP’s TCP’s RTX TimersRTX Timers

•• Slow-start is invoked as a result of aSlow-start is invoked as a result of a
timer expiring (resetting the world)timer expiring (resetting the world)

•• Recall we need some way of setting thisRecall we need some way of setting this
timer, but TCP must work both in local astimer, but TCP must work both in local as
well as very long delay environmentswell as very long delay environments

•• Need a way to set the timer based on theNeed a way to set the timer based on the
connection’s round-trip time:connection’s round-trip time:
––how to measure the RTT?how to measure the RTT?
––how to set the RTX timer based on this?how to set the RTX timer based on this?

Measuring the RTTMeasuring the RTT

•• Should be very simple:Should be very simple:
––when sending a packet, jot down the timewhen sending a packet, jot down the time
––when receive the ACK for it, take thewhen receive the ACK for it, take the

difference and call that the RTTdifference and call that the RTT

•• Problem:Problem:
–– in TCP, no way to tell whether an ACK wasin TCP, no way to tell whether an ACK was

for an original or retransmitted packetfor an original or retransmitted packet
––called “acknowledgement ambiguity”called “acknowledgement ambiguity”

4

Karn’s Karn’s AlgorithmAlgorithm

•• Really two parts...Really two parts...

•• To solve ACK ambiguity:To solve ACK ambiguity:
––do not measure the RTT for segments thatdo not measure the RTT for segments that

have been retransmitted (simple)have been retransmitted (simple)

•• On a timeout:On a timeout:
––network is telling you it is having troublenetwork is telling you it is having trouble
––so, double RTX timer (up to 64x) on eachso, double RTX timer (up to 64x) on each

subsequent timeout (64s max)subsequent timeout (64s max)

Estimating the RTTEstimating the RTT

•• To estimate the connection’s round-tripTo estimate the connection’s round-trip
time, TCP uses an exponentially weightedtime, TCP uses an exponentially weighted
moving average (like RED):moving average (like RED):

•• Also called a low-pass filterAlso called a low-pass filter

•• Requires only 1 word of memoryRequires only 1 word of memory

W m Wt t t= + - -a a()1 1

EWMA ExampleEWMA Example Properties of the EWMAProperties of the EWMA

•• Also sometimes expressed as:Also sometimes expressed as:

•• This form is useful because it involvesThis form is useful because it involves
only one multiply (computationallyonly one multiply (computationally
expensive as compared with add orexpensive as compared with add or
subtract)subtract)

W m W Wt t t t= - +- -a ()1 1

TCP RTT MeasurementTCP RTT Measurement

•• EarlyEarly TCPs TCPs used just the mean RTT used just the mean RTT
estimate and set the timer to be 2x thisestimate and set the timer to be 2x this
estimate…the 2 accounting for someestimate…the 2 accounting for some
amount of varianceamount of variance

•• In large-variance networks, though, thisIn large-variance networks, though, this
might not be enough. How to measuremight not be enough. How to measure
the variability of the RTT as well…?the variability of the RTT as well…?

•• Perhaps the standard deviation…Perhaps the standard deviation…

Measuring VariabilityMeasuring Variability

•• Most common measure of sampleMost common measure of sample
variability is sample variance variability is sample variance SS [square [square
of the standard deviation]:of the standard deviation]:

•• Not very efficient for a protocolNot very efficient for a protocol
implementation due to the square rootimplementation due to the square root
needed to get the sample std. deviationneeded to get the sample std. deviation

S
m

n

i
i

n

X
2

2

1

1
=

-

-
=
Â ()

2

5

Measuring VariabilityMeasuring Variability

•• Alternative is to use the Alternative is to use the mean deviationmean deviation
(or(or mean absolute deviation--MAD mean absolute deviation--MAD):):

•• No need to square or take square root.No need to square or take square root.
Units are same as mean. Not commonlyUnits are same as mean. Not commonly
used because of less nice predictiveused because of less nice predictive
properties than standard deviation.properties than standard deviation.

MD
m

n

i
i

n

X
=

-
=
Â | |

1

Setting the TCP RTX TimeoutSetting the TCP RTX Timeout

•• TCP uses a combination of the mean andTCP uses a combination of the mean and
mean deviation estimators:mean deviation estimators:
––RTT = (1-g)*RTT + g * [RTT = (1-g)*RTT + g * [rttrtt sample] sample]
––D = (1-h)*D + h * |sample - RTT|D = (1-h)*D + h * |sample - RTT|
––g = 0.125 (2^-3), h = 0.25 (2^-2)g = 0.125 (2^-3), h = 0.25 (2^-2)
––efficiently implemented using fixed pointefficiently implemented using fixed point

arithmeticarithmetic

•• So, 95% of the time would expect:So, 95% of the time would expect:
––(RTT-2D)<(actual RTT)<(RTT+2D) if normal(RTT-2D)<(actual RTT)<(RTT+2D) if normal

Setting the TCP RTX TimeoutSetting the TCP RTX Timeout

•• But But RTTs RTTs don’t seem to be don’t seem to be GaussianGaussian, so, so
additional “fuzz” is used:additional “fuzz” is used:
––RTO = RTT + 4 * DRTO = RTT + 4 * D

•• In addition, many In addition, many TCPs TCPs use an impreciseuse an imprecise
clock that only “ticks” every 500ms. Allclock that only “ticks” every 500ms. All
RTT measurements (and timeouts) useRTT measurements (and timeouts) use
this tick rate.this tick rate.

•• Only a single timer maintained usuallyOnly a single timer maintained usually

Silly Window SyndromeSilly Window Syndrome

•• Recall TCP is a window-based protocolRecall TCP is a window-based protocol

•• What happens if a receiver with a smallWhat happens if a receiver with a small
buffer advertises it, and sender quicklybuffer advertises it, and sender quickly
fills it with a small amount of data?fills it with a small amount of data?
–– inefficient use of bandwidth by sending high-inefficient use of bandwidth by sending high-

overhead “overhead “tinygramstinygrams””

•• What to do?What to do?
––want a way to “save up” enough to send,want a way to “save up” enough to send,

and do so only when “worth it”and do so only when “worth it”

Nagle’s Nagle’s AlgorithmAlgorithm

•• Purpose is to avoid inefficient use ofPurpose is to avoid inefficient use of
bandwidthbandwidth

•• Sender operation:Sender operation:
––buffer all user data if any unacknowledgedbuffer all user data if any unacknowledged

data is outstandingdata is outstanding
––ok to send if all ok to send if all ACKd ACKd or have a full packetor have a full packet

(MSS) size worth of data to send(MSS) size worth of data to send

•• Receiver operationReceiver operation
––ok to send if can open ok to send if can open recv recv window enoughwindow enough

Receive Side SWS AvoidanceReceive Side SWS Avoidance

•• Receiver resists advertising a windowReceiver resists advertising a window
bigger than it is currently advertisingbigger than it is currently advertising
(which might be zero) unless it can be(which might be zero) unless it can be
increased by at leastincreased by at least

MIN(one MSS, 0.5 * receiver’s available buffer)MIN(one MSS, 0.5 * receiver’s available buffer)

•• Same bit of logic ensures that windowSame bit of logic ensures that window
shrinkage does not occurshrinkage does not occur

6

Properties ofProperties of Nagle Nagle Algorithm Algorithm

•• Applies only to small packets. For bulkApplies only to small packets. For bulk
data transfers, always have a full MSS todata transfers, always have a full MSS to
sendsend

•• Algorithm is self-clocking:Algorithm is self-clocking:
––basically does Stop&Wait for small packetsbasically does Stop&Wait for small packets
––on LAN, small RTT implies not much wait,on LAN, small RTT implies not much wait,

but inefficientbut inefficient
––on WAN, large implies more wait, but moreon WAN, large implies more wait, but more

efficient on long links [where it counts most]efficient on long links [where it counts most]

Impact of Impact of NagleNagle Algorithm Algorithm

•• When small delay is needed, When small delay is needed, NagleNagle
algorithm can cause unwanted packetalgorithm can cause unwanted packet
delaysdelays

•• Applications can disable this algorithm:Applications can disable this algorithm:
intint one = 1; one = 1;

setsockoptsetsockopt(sock, IPPROTO_TCP, TCP_NODELAY, &one,(sock, IPPROTO_TCP, TCP_NODELAY, &one,
sizeofsizeof(one))(one))

Where we are so far with TCPWhere we are so far with TCP

•• Important algorithmsImportant algorithms
––congestion avoidancecongestion avoidance
––slow startslow start
–– round-trip time estimationround-trip time estimation
––Karn’s Karn’s timer timer backoffbackoff
––silly window avoidance/silly window avoidance/NagleNagle

•• We don’t yet know about connectionWe don’t yet know about connection
establishment (next time…)establishment (next time…)

